Click here to Download
# # DS_Post_Fac.Unif.3 # mod_type pop sscale 0.04 # degr/pix (this is different from stim) tscale 0.002 # sec/frame xn 32 # x size yn 32 # y size tn 1024 # t size
name v1 # Area name x0 10.0 # Origin wrt stim grid y0 10.0 # xn 12 # width yn 12 # height umx 64.0 (um) # microns per Area grid unit (for now, Area = Stim grid)
name orimap # ID for reference type ori # Type of map ncol_x 3 # Number of ori columns in X-direction phase_x 90.0 (deg) # Phase of pinwheel centers along x-axis, 0-360 phase_y 90.0 (deg) # Phase of pinwheel centers along y-axis, 0-360 phase_p 135.0 (deg) # Phase of color around pinwheel center, 0-360
model_noise_seed 231965 # Controls trial seed #--------------------------------------.--------------------------------------# # # # IN # # # #-----------------------------------------------------------------------------#
name in area v1
shape circle r 0.4 g 0.4 b 0.8
map_ori orimap # Set orientations using the named map
zn 4 # Depth of layer
name ex type psg_alpha # Mechanism type tau 0.003 # (s) Tau for excit PSC amp 1.0 # (nS) Amplitude for excit PSC syntype 1 # 1-excit, 2-inhib <>
name in type psg_alpha # Mechanism type tau 0.004 # (s) Tau for inhib PSC amp 4.0 # (nS) Amplitude for inhib PSC syntype 2 # 1-excit, 2-inhib <>
name lgn_ex type psg_doe # Mechanism type ### EPSG from LGN to cortex, Diff Of Exp tau_r 1.0 # (ms) rise time constant tau_f 4.0 # (ms) fall time constant amp 1.0 # (nS) amplitude sdf 1.0 # () synaptic depression, ampl after spike sdtau 99.0 # (ms) synaptic depression, recovery time constant <>
# LGN input type lgn_on_off receptor lgn_ex pop_origin lgn # Population of origin of LGN inputs [lgn] sf 2.0 # (cyc/deg) Spatial frequency sd_orth 0.125 # (deg) Gaussian SD for Gabor RF orthog to ori sd_par 0.215 # (deg) Gaussian SD for Gabor RF parallel to ori phseed 23092 # for chosing phase (random in 1 of 4 phases) ph0 0.0 # (degr) initial phase seed 1237 # for chosing DOG sampling phtype 1 # 0-const, 1-regular phase steps, 4-regular quads phstep 90.0 # (degr) phase step nsamp 30 # () number of samples to select as inputs maxrep 1 # number of times any one connection can be sampled eps 0.05 # no connections where profile < this frac of max balance 0 # Balance the # of ON and OFF connections
type bg # Background input spikes ex_rate 100.0 # spikes/s ex_amp 2.0 # relative to _psc_amp_ex in_rate 50.0 # spikes/s in_amp 2.0 # relative to _psc_amp_in
type ifc # Conductance driven integrate and fire v_spike 10.0 # (mV) Spike height v_th_x -52.5 # (mV) Spike threshold v_reset_x -57.8 # (mV) Spike reset voltage tau_r_ad 1.00 # (ms) Adaptation rise time tau_f_ad 80.0 # (ms) Adaptation fall time gbar_ad 0.0 # (nS) Adaptation conductance v_ex 0.0 # (mV) Excitatory reversal v_in -70.0 # (mV) Inhibitory reversal v_ad -90.0 # (mV) Adaptation reversal v_leak_x -81.6 # (mV) Leakage reversal g_leak_x 18.0 # (nS) Leakage conductance c_x 214.0 # (pF) Membrane capacitance trefr_x 1.5 # (ms) Refractory period gx_scale 2.0 # () Scale excit g, before adding bias gx_bias 0.0 # (nS) Constant added to g, after any scaling
type gfg # gfg = Gaussian filtered Gaussian noise mean 0.0 (nS) # mean sd 4.0 (nS) # standard deviation tsd 2.0 (ms) # temporal SD <> grect 1 # half-wave rectify gx, gi after adding noise
#--------------------------------------.--------------------------------------# # # # EX # # # #-----------------------------------------------------------------------------#
name ex area v1
shape stellate r 0.0 g 0.8 b 0.2 npoint 5
map_ori orimap # Set orientations using the named map
zn 4
# Incoming excitatory spikes name ex type psg_alpha # Mechanism type tau 0.003 # (s) Tau for excit PSC amp 1.0 # (nS) Amplitude for excit PSC syntype 1 # 1-excit, 2-inhib <>
# Incoming inhibitory spikes name in type psg_alpha # Mechanism type tau 0.004 # (s) Tau for inhib PSC amp 4.0 # (nS) Amplitude for inhib PSC syntype 2 # 1-excit, 2-inhib <>
name lgn_ex type psg_doe # Mechanism type ### EPSG from LGN to cortex, Diff Of Exp tau_r 1.0 # (ms) rise time constant tau_f 4.0 # (ms) fall time constant amp 1.0 # (nS) amplitude sdf 1.0 # () synaptic depression, ampl after spike sdtau 99.0 # (ms) synaptic depression, recovery time constant <>
type bg # Background input spikes ex_rate 0.0 # spikes/s ex_amp 1.0 # relative to _psc_amp_ex in_rate 200.0 # spikes/s in_amp 6.0 # relative to _psc_amp_in
# Ex layer input connections (from LGN) name lgn type lgn_on_off receptor lgn_ex pop_origin lgn sf 2.00 # (cyc/deg) Spatial frequency sd_orth 0.125 # (deg) Gaussian SD for Gabor RF, orthog to ori sd_par 0.215 # (deg) Gaussian SD for Gabor RF, parallel to ori phseed 485401 # for chosing phase (random in 1 of 4 phases) seed 1777 # for chosing DOG sampling nsamp 30 # () number of samples to select as inputs maxrep 1 # number of times any one connection can be sampled eps 0.03 # no connections where profile < this frac of max phtype 1 # 0-const, 1-regular phase steps, 4-regular quads ph0 0.0 # (degr) initial phase phstep 90.0 # (degr) phase step balance 0 # Balance the # of ON and OFF connections
### i2e inputs type regular # pop_origin in # Where it comes from receptor in # Where it lands
type corr_lgn # Correlation corr_sign -1 # 1-correlated, -1-anticorrelated algorithm 1 # run new picking algorithm, 0 calls old minw 0.5 # minimum weight cdist 500.0 (um) # Cutoff distance (probably need to mult x 2 amp) normw 10.0 # Based on cell center
type ifc # Conductance driven integrate and fire v_spike 10.0 # (mV) Spike height v_th_x -52.5 # (mV) Spike threshold v_reset_x -56.5 # (mV) Spike reset voltage tau_r_ad 1.00 # (ms) Adaptation rise time tau_f_ad 83.3 # (ms) Adaptation fall time gbar_ad 0.0 # (nS) Adaptation conductance v_ex 0.0 # (mV) Excitatory reversal v_in -70.0 # (mV) Inhibitory reversal v_ad -90.0 # (mV) Adaptation reversal v_leak_x -73.6 # (mV) Leakage reversal g_leak_x 25.0 # (nS) Leakage conductance c_x 500.0 # (pF) Membrane capacitance trefr_x 2.5 # (ms) Refractory period gx_scale 5.0 # () Scale excit g, before adding bias gx_bias 0.0 # (nS) Constant added to g, after any scaling
type gfg # gfg = Gaussian filtered Gaussian noise mean 0.0 (nS) # mean sd 2.0 (nS) # standard deviation tsd 1.0 (ms) # temporal SD <> grect 1 # half-wave rectify gx, gi after adding noise
#--------------------------------------.--------------------------------------# # # # DS # # # #-----------------------------------------------------------------------------#
name ds area v1
shape triangle r 0.8 g 0.8 b 0.2
map_ori orimap # Set orientations using the named map map_dir_flag ori # for SI02
xn 2 # Layer dimensions yn 2 x0 5 y0 5
# Incoming excitatory spikes name ex type psg_alpha # Mechanism type tau 0.003 # (s) Tau for excit PSC amp 1.0 # (nS) Amplitude for excit PSC syntype 1 # 1-excit, 2-inhib <>
# Incoming inhibitory spikes name in type psg_alpha # Mechanism type tau 0.004 # (s) Tau for inhib PSC amp 4.0 # (nS) Amplitude for inhib PSC syntype 2 # 1-excit, 2-inhib <> ## ## Synaptic Interaction Mechanism 'SI_DS02' ## ## This mechanism will convert each synaptic input (i1) to a pair of ## two interacting synaptic inputs (i1 i2). The input i2 added to form ## the pair must be at the same x,y location as i1 and have an appropriate ## spatial phase shift of its RF with respect to i1. The phase shift is ## controled by 'ph_shift' and 'ph_dev'. ## ## The interaction will involve setting up a temporal mask following ## spikes from i2 that will be used to modulate the conductance ## induced by spikes from i1. ## The parameter 'dt' controls the timing of the peak of the positive ## interaction, and 'masktype' determines the shape of the mask function. ##
# Direction selective mechanism name ds02 type si_ds02 # Synaptic interaction dt 0.020 # (s) Peak interaction time masktype 2 # 1-sinusoid, 2-maxwell mask_amp 1.0 # [1.0 default] mask amplitude mask_comp prod # ['prod'] 'prod', 'prod1m'= product 1-mask ph_shift 90.0 # Target phase shift between cells, -180 to 180 [90.0] ph_dev 5.0 # Deviation around phase shift [Broken near 180] <> ## ## DS Inputs ##
type regular # pop_origin ex # Where it comes from receptor ex # Where it lands syn_int ds02 # Synaptic interaction ## ## This controls the distribution across the population of the ## inputs. 'cdist' is the maximum distance in the ## cortex, and 'cori' is the maximum difference in orientation. ##
type ori_dist shape uniform cdist 135.0 # (um) crit connection distance (max) cori -1.0 # (degr) crit orientation difference (max) ori_mean_flag 0 # 0-self, 1-offset, 2-fixed absolute [0] cori_offset 0 # Only used if 'ori_mean_flag' is 1 minw 0.05 # () suppress connections with lower weight normw 50.0 # () normalize weights to this many unitary seed 32510 # Randomization seed for probabilistic sampling prob 0.3
name dsbg type bg # Background input spikes ex_rate 150.0 # spikes/s ex_amp 5.0 # relative to _psc_amp_ex in_rate 200.0 # spikes/s in_amp 2.0 # relative to _psc_amp_in
type ifc # Conductance driven integrate and fire v_spike 10.0 # (mV) Spike height v_th_x -52.5 # (mV) Spike threshold v_reset_x -56.5 # (mV) Spike reset voltage tau_r_ad 1.00 # (ms) Adaptation rise time tau_f_ad 83.3 # (ms) Adaptation fall time gbar_ad 0.0 # (nS) Adaptation conductance v_ex 0.0 # (mV) Excitatory reversal v_in -70.0 # (mV) Inhibitory reversal v_ad -90.0 # (mV) Adaptation reversal v_leak_x -73.6 # (mV) Leakage reversal g_leak_x 25.0 # (nS) Leakage conductance c_x 500.0 # (pF) Membrane capacitance trefr_x 2.5 # (ms) Refractory period
type gfg # gfg = Gaussian filtered Gaussian noise mean 0.0 (nS) # mean sd 2.0 (nS) # standard deviation tsd 1.0 (ms) # temporal SD <> grect 1 # half-wave rectify gx, gi after adding noise
#--------------------------------------.--------------------------------------# # # # LGN # # # # DoG.0.moo # # # #-----------------------------------------------------------------------------#
name lgn type lgn # Layer type area lgn
shape cs r 1.0 g 1.0 b 1.0 r1 0.5 g1 0.5 b1 0.5
zn 2 # Depth of layer
binocular 0 # 0-monocular, 1-binocular mesh_flag 0 # 0-default, 1-mesh sig1 0.05 # SD Center (deg) sig2 0.25 # SD Surr (deg) amp1 4.00 # Amp Center amp2 0.10 # Amp Surr tsig 25.00 # SD Gaussian to multiply temporal filter (ms) tab_k 200.00 # ABTemporal filter 'k' tab_n 3.00 # ABTemporal filter 'n' cs_delay_s 0.008 # Delay of surround w.r.t. center (s) tdelay 0.010 # Time delay, to simulate latency (s) write_dog_temporal NULL # Set a name to do the dump [NULL] ifc_dump_center 0 # IFC dump for middle unit
type ifc # Conductance driven integrate and fire v_spike 10.0 # (mV) Spike height v_th_x -52.5 # (mV) Spike threshold v_reset_x -56.5 # (mV) Spike reset voltage tau_r_ad 1.00 # (ms) Adaptation rise time tau_f_ad 80.0 # (ms) Adaptation fall time (fast avoids biphasic onset) gbar_ad 0.0 # (nS) Adaptation conductance (zero to avoid transient) v_ex 0.0 # (mV) Excitatory reversal v_in -70.0 # (mV) Inhibitory reversal v_ad -90.0 # (mV) Adaptation reversal v_leak_x -73.6 # (mV) Leakage reversal g_leak_x 75.0 # (nS) Leakage conductance c_x 200.0 # (pF) Membrane capacitance trefr_x 0.5 # (ms) Refractory period trefr_x_sd 2.0 # (ms) Add rectified Gaussian noise to refr period gx_scale 3.5 # () Scale exc conductance, before adding bias gx_bias 28.5 # (nS) Constant added to cond, after any scaling
type gfg # gfg = Gaussian filtered Gaussian noise mean 0.0 (nS) # mean sd 2.0 (nS) # standard deviation tsd 1.0 (ms) # temporal SD <> grect 1 # half-wave rectify gx, gi after adding noise dump 0 #